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With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to
study the broad prospective of the environmental adaptation and the overall changes at transcriptional and
translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted
in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different
cyanobacterial genomes and their adaptations to different environments was examined by identifying the geno-
mic composition for specific cellular processes, which reflect their genomic functional profile and ecological ad-
aptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other
categories and differentiation of genomic functional profilewas observed for the species inhabiting different hab-
itats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes.
Strain specific functionswere also reported inmany cyanobacterial members, of which an important feature was
the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major
factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological
adaptations.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cyanobacteria are oxygenic photosynthetic bacteriawidely used as a
model organism for the study of numerous biological processes includ-
ing photosynthesis, nitrogen fixation, environmental stress tolerance
and molecular evolution [1]. Cyanobacteria show broad diversity in
terms of their morphology, habitat and functionalities [2,3], which are
reflected in their genome and/or other pertinent genomic features
(e.g., genome size, coding region, GC content). Cyanobacterial species
are subjected to a variety of niche-specific competitive forces in the en-
vironment that result in unique characteristics of each genome, in the
course of evolution [2]. They are reported to follow two types of trends
in terms of their genome size; certain species involve amix of expansion
and reduction, e.g. genus Acaryochloris [4], whereas closely related ma-
rine picocyanobacteria in general tends to follow genome reduction or
genome streamlining and maintain only a minimal gene repertoire [5–
7]. Earlier report suggests that, in billion years of evolution, significant
changes occur in the genomes of cyanobacteria possibly due to adapta-
tion towards their habitats and this might have resulted in redundancy
of duplicated genes and increased mutation rates [2].

With respect to genome size and gene content, prokaryotic genomes
are constantly shifting, owing to the factors like gene duplication, gene
loss, horizontal gene transfer, and de novo origin of the genes (gene
. This is an open access article under
genesis) [8]. Overall, the genome size of the bacteria is maintained in
equilibrium between the duplication or horizontal transfer, and muta-
tions leading to elimination of function(s) followed by deletions (gene
loss) [9]. It has been already reported that larger genomes preferentially
accumulate genes involved in the regulation (e.g., genes involved in sec-
ondary metabolism along with those related to energy conversion are
ecologically more adaptable to the environments, where the resources
are varied and poor) and complete understanding of this will provide
the detailed insight into the interaction between ecology and genome
evolution [10]. Furthermore, microbial genomes are subjected to hori-
zontal gene transfer related events and acquire foreign DNA from the
surroundings more frequently in comparison to the higher organisms
[11]. The events of horizontal gene transfer in combination with intra-
genomic rearrangements and duplication are accountable for bacterial
adaptations in different environmental niches and variance in closely
related species. Phylogenomics studies have shown a complex evolu-
tionary pattern for the microbes that undergo not only vertical descent
or lateral gene transfer but also include a mix of recombination, gene
duplication, gene invention, gene loss, gene degradation, convergence
and selection processes [12,13].

Keeping aforesaid facts in view and the availability of a large number
of cyanobacterial sequenced genomes, here in this study we identified
the functional composition of 84 cyanobacterial genomes and based
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Functional categories identified in the cyanobacterial genomes.

S.
no. Function class Identified COG categories

1 Metabolism Amino acid transport and metabolism (E)
Carbohydrate transport and metabolism (G)
Nucleotide transport and metabolism (F)
Energy production and conversion (C)
Coenzyme transport and metabolism (H)
Lipid transport and metabolism (I)
Inorganic ion transport and metabolism (P)
Secondary metabolite biosynthesis, transport
and catabolism (Q)

2 Cellular processes and
signalling

Cell wall/membrane/ envelope biogenesis (M)
Cell motility (N)
Cell cycle control, cell division, chromosome
partitioning (D)
Posttranslational modification, protein turnover,
chaperones (O)
Signal transduction mechanisms (T)
Intracellular trafficking, secretion, and vesicular
transport (U)
Defense mechanisms (V)
Cytoskeleton (Z)

3 Information storage &
processing

RNA processing and modification (A)
Chromatin structure and dynamics (B)
Translation, ribosomal structure and biogenesis
(J)
Transcription (K)
Replication, recombination and repair (L)

4 Poorly categorized Function unknown (S)
General function prediction only (R)
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upon thefindings a correlation has been deducedwith the adaptation of
these organisms to various ecological niches.We attempted to compare
the cyanobacterial species for the identification of the part/genes of
their genome contributing to a particular cellular process as it may
give reflection of both the cellular and ecological strategies associated
with genome expansion and adaptation to the environmental
conditions.

2. Material and methods

2.1. Genome sequences

The complete genome sequence of 84 cyanobacterial strains avail-
able at Integrated Microbial Genomes (IMG) database (https://img.jgi.
doe.gov/cgi-bin/w/main.cgi) were retrieved for this study. Among
these 84 genomes, 69 species occupy aquatic habitats (freshwater: 33
sps.; marine: 30 sps.; hot spring: 06 sps.) (genome size in a range of
1.44–8.73 Mb), 06 terrestrial species (genome size: 6.69–8.27 Mb), 05
members occupy multiple habitats (genome size: 4.66–9.06 Mb)
while 04 species acquire other habitats (genome size: 4.68–5.13 Mb)
(Table S1). The major characteristics of all the cyanobacteria (e.g., hab-
itat, genome size, no. of genes etc.) included in this study have been
given in Table S1.

2.2. Functional characterization and Clusters of Orthologous Groups (COG)
assignment

Functional characterization of cyanobacterial genomes was per-
formed by using the Clusters of Orthologous Groups (COG) database
[14]. For each cyanobacterial genome, all the genes were subjected to
COG assignment using the Function Profile tool (IMG database) [15].
The Function Profile tool assists in the identification of the genes associ-
atedwith a particular function in ‘query genome’ and thus, genes are ex-
pected to share at least the same functions associated with their COG
matches. Once the genes were assigned to the COGs, they were clus-
tered into 23 functional categories, which were further grouped into
four major classes (Table 1).

2.3. COG categorization

Practical Extraction and Report Language (PERL) scripts were used
for arranging all the COGs respective of their functional category for
each cyanobacterial species. PERL scripts were also used for the analysis
of the distribution pattern of each COG category across the members of
the dataset.

2.4. Statistical analysis

All the statistical analyses involved in this study were performed by
using the SPSS Version 16.0 software.

3. Results and discussion

3.1. General characteristics

The size of cyanobacterial genomes lies in a range of 1.44 Mb
(CAt_ALOHA) to 9.06 Mb (Np_PCC_73102) (Table S1). All the genomes
contain single circular chromosome as their major genetic material,
whereas, an additional chromosome was present in three
cyanobacterial species i.e., Cs_ATCC51142, Av_ATCC29413 and As_90.
Members of the dataset occupied diverse habitats, i.e., aquatic (marine,
freshwater or hot springs), terrestrial, and some representmultiple hab-
itats (Table S1). It was also found that cyanobacteria exhibiting marine
habitats tend to have lower genome size in comparison with those re-
siding in other habitats (Table S1).
3.2. COG assignment and functional genomics profiling of cyanobacteria

Wewere able to assign on an average of ~53% of the genes in any ge-
nome to a particular COG functional category by using the Function Pro-
file tool. Among the cyanobacterial species, 2616 individual COGs from
23 different functional categories of four major classes, i.e., Metabolism,
Cellular processes and signalling, Information storage & processing, and
Poorly categorizedwere identified (Table 1). Only 400 COGs (15%)were
common in all the 84 cyanobacteria, while remaining represent the
functions of pan-genome for these organisms, in which ~06.68% func-
tions are strain-specific, i.e., owned by only one member. Among all
these 23 categories, Cell motility (N), Chromatin structure and dynam-
ics (B), Cytoskeleton (Z), and RNA processing and modification (A) cat-
egories were not present in all the cyanobacteria (Table 1). While
analyzing the distribution of each functional category, it was observed
that across all cyanobacterial species, genes associated with metabolic
functions gained maximum share (Fig. 1). The next most abundant
functional category in most of the cyanobacteria (specifically those
inhabiting freshwater and multiple habitat) was that of poorly catego-
rized genes, i.e., Function unknown (S) and General function prediction
only (R). Marine cyanobacteria preferred genes for Information Storage
and Processing over Cellular Processes and Signalling, whereas, the later
one is mostly preferred by the cyanobacteria from other habitats (Fig.
2). Further, hierarchical clustering on the basis of functional categories
reflected two different groups among the cyanobacteria, the first
group (group I) included the members from diverse habitats (freshwa-
ter, multiple, other), while the second group (group II) specifically in-
cluded marine and hot-spring cyanobacteria with only three
freshwater species (Fig. 2). Both the above mentioned groups showed
different functional profiles. In general, habitat seems to influence the
functional profile as members from similar habitats possess similar
kind of functional profile (Fig. 2). Earlier, it has been reported that bac-
terial genomes contain specific functional gene inventories, which are in
concurrence with their survival in the particular ecological niche [16–
18]. In the bi-variate correlation analysis, the larger genomes showed
a significant strong positive correlation with the functional categories

https://img.jgi.doe.gov/cgi-bin/w/main.cgi
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Fig. 1. Percentage distribution of four major function classes in all cyanobacterial genomes.
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R, T, K, S, Q, V and N (0.832**, 0.823**, 0.821**, 0.798**, 0.740**, 0.614**,
0.531**, respectively at 0.01 level (2-tailed)), whereas they exhibited a
strong negative correlation with functional categories C, E, O, F, J, H
(−0.717**, −0.783**, 0–0.786**, −0.854**, −0.887**, −0.896**, re-
spectively at 0.01 level (2-tailed)).

3.3. Variations among different functional categories and their possible
roles in ecological adaptation

Marine species showed completely different functional genomepro-
file as compared to the rest of the cyanobacteria. In marine
cyanobacteria, Amino acid transport and metabolism (E) was the most
abundant functional category followed by Translation, ribosomal struc-
ture and biogenesis (J), while the functional category, Function un-
known (S) and General function prediction only (R) were the most
abundant in the cyanobacteria from other habitats (freshwater and ter-
restrial) (Fig. 2). It was observed that the category E was not so abun-
dant in the freshwater or terrestrial cyanobacteria. As, it has been
already reported that the bacteria in the nutrient-limited environment
prefer production of only those proteins, which are indispensable for
their survival, owing to the fact that biosynthesis of proteins are expen-
sive [19–20]. To ensure this, bacteria follows signal-dependent regula-
tion which make certain that particular genes and proteins are
expressed or activated only at the time of their need and it is essential
for the bacteria occupying diverse range of habitats each with its own
set of nutrients and adversaries [21]. In this study, cyanobacteria pres-
ent in habitats of diverse and scarce nutritional sources (like soil,
sandy crust, freshwater etc.) showed an abundance of genes involved
in signal transduction mechanism (T). Cyanobacteria from freshwater
and terrestrial habitat possess significant fractions of genes involved in
transcription (K) in comparison to rest of themembers and the probable
reason for this is the fact that adaptations to specific niche require deep
transcriptional reshaping [22]. Also, the expression of many other genes
especially in specific conditions depends on the transcription processes
[23]. Regulatory genes, like those involved in, transcription and signal
transduction mechanisms are dominant in the genomes of organisms
in which successful control of the metabolic functions can lead to
good growth conditions under stressful environments [24–26]. Among
all the 84 cyanobacteria selected, 4.98–7.86% genes were involved in
the Energy Production and Conversion (C). Interestingly, the marine
cyanobacterial species possesses slightly higher number of such genes
(C). Energy generation is a fundamental phenomenon for microbes to
drive physiologically significant mechanisms for the survival in sub-
normal or extreme environments [27,28]. RNA processing and modifi-
cations (A) category genes were present in 13 species (Ce_PCC_9333,
Ps_PCC_7327, Cs_PCC_7424, Oa_PCC_6304, Ns_PCC_7524,
Cs_PCC_7822, Gs_PCC_7428, Cs_PCC_7417, Av_ATCC_29413,
Cs_PCC_7507, Ms_PCC_7113, Ns_PCC_7120 and Np_PCC_73102),
while Cytoskeleton (Z) category was present only in Ls_PCC_7376.

Genes of functional category Inorganic ion transport andmetabolism
(P), Cell motility (N), Defensemechanisms (V), Replication, recombina-
tion and repair (L) were more abundant in the group I as compared to
the group II (Fig. 2). These genes often correspond to the features that
may provide a competitive advantage to the organisms for adaptation
against the environmental conditions [29]. Multiple copies of the
genes of the category ‘Inorganic ion transport and metabolism’ assists
in enhanced uptake of the trace metals crucial for the survival, as the
availability of indispensable trace metals (e.g., copper and iron) in vari-
ous ecological nichesmay be scarce, andmay bedifficult to utilize by the
organisms [30]. Thus, improving the functional capabilities within the
organisms might be advantageous. Genes involved in Defense mecha-
nisms (V) enhance the adaptability of the microbe to diverse ecological
niches. Stressful habitats, like, presence of damaging contaminations,
nutrition deficiency or a high or low temperaturemay lead to DNAdam-
age and thus, the presence of extra copies of genes involved in replica-
tion/repair enhances the robustness of the repair systems within the
organisms [29]. Furthermore, presence of additional copies of genes in-
volved in cell motility may also be beneficial, making movement more
feasible for organisms in these diverse environment [29]. In the group
I, a significant proportion of genes of unknown functions were present
and identified, and only general prediction has been made about their
functions. About 12% of the genes (an average) were from each of
these categories, i.e. unknown functions and general predictions, in
the members of the group I (Fig. 2).

3.4. Strain-specific functional categories

Strain-specific functions were identified in 53 members of
cyanobacteria amongwhich only 14members belong tomarine habitat
(Table S2). Many strain-specific COGs with poorly characterized func-
tions were identified and shown in Table S2. Unique genes are reported
to be distinctive for particular environments and are also subjected to



Fig. 2.Heatmap based on the percentage distribution of the genes in each functional category for all the cyanobacteria under consideration (color coding varies from black to red, where
black represents the lowest value and red represents the highest one). (Note: Group I includes members from following habitats (in same order they appear in heatmap): Aquatic
(Freshwater): Cs_PCC_8802, Cs_PCC_8801, Hs_PCC_7418; Aquatic (Marine): Cs_BH68_ATCC_51142, Ns_CCY9414; Aquatic (Freshwater): Ds_PCC_8305, Ss_PCC_6312, Cs_PCC_7822,
Cs_PCC_7424; Terrestrial (sandy crust): Ce_PCC_9333; Aquatic (Freshwater): Ap_NIES_39, Ss_PCC_6803_PCC_P, Ss_PCC_6803_PCC_N, Ss_PCC_6803_GT_I, Ss_GT_S_PCC_6803,
Ca_PCC_10605, Ss_PCC_6803_U, Ss_PCC_6803, Ss_PCC_6803; Other (Snail shell. Intertidal zone): Ps_PCC_7367; Aquatic (Marine): Te_IMS101; Aquatic (Freshwater): Ls_JSC_1,
Ls_JSC_1, Gs_PCC_7428; Terrestrial (soil): Ct_PCC_7203; Multiple (Fresh water, Soil): Gv_PCC_7421; Other (epilithic biofilm): Gk_JS1; Aquatic (Freshwater): Sc_PCC_7437,
Cs_PCC_7425; Other (Unknown): Gs_PCC_7407; Aquatic (Hot Spring): Ps_PCC_7327, Aquatic (Freshwater): Ns_PCC_7524; Multiple (Aquatic, Soil): Av_ATCC_29413, Ns_PCC_7120;
Aquatic (Marine): Rs_PCC_7116; Multiple (Fresh water, Soil): Np_PCC_73102; Aquatic (Marine): Am_MBIC11017; Aquatic (Freshwater): Cm_PCC_6605, Cs_PCC_6303, Ns_PCC_7107,
Cs_PCC_7507, As_90, Ac_PCC_7122; Terrestrial (soil): Cs_PCC_7417, Oa_PCC_6304, Ms_PCC_7113; Other (Unknown): Ls_PCC_7376; Aquatic (Freshwater): Ss_PCC_7502, Na_0708;
Terrestrial (soil): Onv_PCC_7112; Multiple (Aquatic, Fresh water, Host): Ma_NIES_843 while Group II includes Aquatic (Marine): Ss_WH8102, Ss_WH_7803, Ss_RCC_307, Ss_CC9605,
Ss_CC9311, Ss_KORDI_52, Ss_KORDI_100, Ss_KORDI_49, Ss_WH_8016, Pm_MIT_9313, Pm_MIT_9303, Ss_CC9902, Ss_WH_8109, Pm_MIT_9312, Pm_AS9601, Pm_CCMP_1986,
Pm_MIT_9211, Pm_NATL1A, Pm_NATL2A, Pm_MIT_9301, Pm_MIT_9215, Pm_MIT_9515, Pm_CCMP_1375, CAt_ALOHA; Aquatic (Freshwater): Se_PCC_7942, Se_PCC_6301; Aquatic
(Hot Spring): Ts_NK55a, Cs_PCC_7202; Aquatic (Marine): Ss_PCC_7002; Aquatic (Freshwater): Cg_PCC_6307; Aquatic (Hot Spring): Ss_JA23Ba213, Ss_JA33Ab, Te_BP_1).
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wide horizontal gene transfer [3,31,32]. Based upon the findings, it can
be speculated that these genes possibly play a significant role in the ad-
aptation of these cyanobacterial species to the different ecological areas.
Occurrence of some phage-related sequences, i.e., uncharacterized ho-
molog of phage Mu protein gp47 (Cs_PCC_6303), phage terminase
large subunit (Ns_PCC_7524), phage P2 baseplate assembly protein
gpV (Se_PCC_7942), Mu-like prophage FluMu protein gp28
(Ss_PCC_6312), Mu-like prophage protein gpG (Ss_PCC_6312), phage-
related protein, predicted endonuclease (Ss_WH_8016) and phage
anti-repressor protein (Ms_PCC_7113)were found as additional charac-
teristics of species-specific COGs (Table S2). Prophage is recognized as
the main contributor of microbial diversification that helps in the sur-
vival of the bacteria under different ecological conditions, genomic rear-
rangements, and mediating transfer of virulence factors [33–35]. No
unique gene was identified for COG categories, RNA processing and
modification (A) and Chromatin structure and dynamics (B). This find-
ing is in concurrence with earlier publications reporting conservation of
genes involved in information processing and signalling, in large evolu-
tionary distances [36–39]. The probable reason lies in the fact that they
encode for the basic functionalities of the cell (i.e., transcription, transla-
tion, repair etc.) and any changes in the gene sequence will lead to the
disruption of normal cellular machinery [23].
3.5. Acquisition of plasmids

Varying numbers (1–9) of plasmidswere found in 36 cyanobacterial
species (Table S1), andmost of them belong to freshwater, terrestrial or
other habitats. Remarkably, it is worth to note that plasmids were pres-
ent in all the terrestrial species. Plasmids are reported to play a vital role
in adaptation [40], and their acquisition is suggested as a factor of adapt-
ability towards habitats [35]. They also have pivotal role in bacterial
evolution anddiversification and reported to play significant role in hor-
izontal gene transfer in bacteria [41,42]. In fact, the key factors respon-
sible for maintaining the plasmids in bacterial populations are
horizontal transfer, compensatory adaptation and a positive selection
for the genes encoded by them [41]. The presence of plasmids in these
cyanobacterial species suggested that they are gained and maintained
by these species in the course of evolution, as a step towards adaptation
to their respective ecological surroundings.

In a nutshell, we observed that cyanobacteria with different habitats
(freshwater, terrestrial or rocks) tends to have larger genome size as
compared to the marine species and preferentially accumulate genes
for regulation, motility and secondary metabolism in contrast to the
genes responsible for informational consequences that are abundant
in marine members. Broad metabolic diversity was also observed in
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large sized cyanobacteria. Consequences of having large genomes in
bacteria were realized with the fact that bigger genomes are more suc-
cessful in the environment of scarce but diverse nutritional resources
[43–45]. The characteristics of gene gain within the genomes may
help in understanding the interaction between the ecological conditions
and genomic evolution. Although, it's clear thatmicro-evolutionary pro-
cesses (functional divergence) in amalgamation with macro-evolution-
ary processes (horizontal gene transfer or genome shrinkage) are
accountable for survival and adaptation of bacterial population to varied
ecological niches [23,42,46]. Based upon the functional genomics char-
acteristics, it can be suggested that cyanobacterial species develop spe-
cific mechanisms for the adaptation to a particular ecological niche.
Earlier, genome shrinkage is thought to be a key element underlying
the ecological success of marine Prochlorococcus sps in oligotrophic
open ocean environments [47].

4. Conclusion

In conclusion, we can suggest that the interaction between
cyanobacteria and particular habitats is responsible for genome expan-
sion. These cyanobacteria have gained a number of genes (most of them
are uncharacterized), though they will definitely have some important
role in the survival of the organismand adaptability towards the specific
environment. Also, metabolic diversity was observed for larger ge-
nomes of cyanobacteria present in diverse habitats. These cyanobacteria
have also gained a large number of plasmids and phage related se-
quences in some of their species. Identification of the number of genes
with unidentified functions and especially those which are exclusive
in particular cyanobacteria provides an opportunity for the microbiolo-
gists to investigate the unique traits that are still not annotated and
might facilitate with certain novel information. Overall, this study pro-
vides a better understanding of the functional profile of cyanobacteria
inhabiting diverse ecological niches and also aims to identify the shifts
in their functional profile towards ecological adaptation.
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